Public health impacts of secondary particulate formation from aromatic hydrocarbons in gasoline
نویسندگان
چکیده
BACKGROUND Aromatic hydrocarbons emitted from gasoline-powered vehicles contribute to the formation of secondary organic aerosol (SOA), which increases the atmospheric mass concentration of fine particles (PM2.5). Here we estimate the public health burden associated with exposures to the subset of PM2.5 that originates from vehicle emissions of aromatics under business as usual conditions. METHODS The PM2.5 contribution from gasoline aromatics is estimated using the Community Multiscale Air Quality (CMAQ) modeling system and the results are compared to ambient measurements from the literature. Marginal PM2.5 annualized concentration changes are used to calculate premature mortalities using concentration-response functions, with a value of mortality reduction approach used to monetize the social cost of mortality impacts. Morbidity impacts are qualitatively discussed. RESULTS Modeled aromatic SOA concentrations from CMAQ fall short of ambient measurements by approximately a factor of two nationwide, with strong regional differences. After accounting for this model bias, the estimated public health impacts from exposure to PM2.5 originating from aromatic hydrocarbons in gasoline lead to a central estimate of approximately 3800 predicted premature mortalities nationwide, with estimates ranging from 1800 to over 4700 depending on the specific concentration-response function used. These impacts are associated with total social costs of $28.2B, and range from $13.6B to $34.9B in 2006$. CONCLUSIONS These preliminary quantitative estimates indicate particulates from vehicular emissions of aromatic hydrocarbons demonstrate a nontrivial public health burden. The results provide a baseline from which to evaluate potential public health impacts of changes in gasoline composition.
منابع مشابه
Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions.
Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and or...
متن کاملDNA binding of polycyclic aromatic hydrocarbons in a human bronchial epithelial cell line treated with diesel and gasoline particulate extracts and benzo[a]pyrene.
Particulate matter of vehicle exhaust is known to contain carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAH) and is suggested to increase lung cancer risk in humans. This study examines the differences in diesel and gasoline-derived PAH binding to DNA in a human bronchial epithelial cell line (BEAS-2B). Particulate matter (PM) of gasoline exhaust was collected from passenger ...
متن کاملEnvironmental Effects of Vehicle Exhausts, Global and Local Effects – A Comparison between Gasoline and Diesel by LU JIE
Since 1970, vehicle’s exhaust pollutions have received increasing attention as a source of air pollution at both local (human health concerns) and global (global warming) scales. This study mainly discusses diesel and gasoline vehicles because, today, over 90% of vehicles on the road use gasoline and diesel fuels. The major concerns of gasoline exhaust contaminants are carbon monoxide (CO), hyd...
متن کاملChemical and mutagenic patterns of airborne particulate matter collected in 17 Italian towns.
The mutagenicity of airborne particulate matter collected in 17 towns of Italy in 1990 was assessed using the Ames test. The mutagenicity of crude extract correlated with amount of lead, suggesting the direct contribution of gasoline car exhausts. Moreover, the mutagenicity correlated with particulate matter amounts. An inverse correlation with temperature was observed. The crude extracts were ...
متن کاملGas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog AerosolsGas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog Aerosols
Gas/particle (G/P) partitioning is an important process that affects the deposition, chemical reactions, long-range transport, and impact on human and ecosystem health of atmospheric semivolatile organic compounds (SOCs). Gas/ particle partitioning coefficients (Kp) were measured in an outdoor chamber for a group of polynuclear aromatic hydrocarbons (PAHs) and n-alkanes sorbing to three types o...
متن کامل